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Consideration is given to the stability of periodic solutions of quasi- 
linear autonomous systems for which the equation of fundamental ampli- 
tudes has multiple roots. In this case the periodic solutions can be re- 
presented in the form of series in integral, as well as fractional, 
powers of a small parameter. 

1. Let us consider the oscillatory system 

g+ PBX = pf ( dX 
xv dt 9 p 1 (f.1) 

The function f(x, i, p) is assumed to be analytic in its arguments 
in some region of their variation; the parameter p is small and positive. 
Wen w = 0, a solution of the generating equation is 

x0 (t) = A0 cos pt (1.2) 

The initial conditions for the system (1.1) can be taken (in view of 
the autonomous nature of our system) as 

2 (0) = -40 + P, j. (0) = 0 (1.3) 

where p is a function of p which vanishes when p = 0. 

The solution of the equation (1.1) can be expressed in the form [ll 
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Here the function C,(t) is determined by the formulas (1.5) 

The oscillation period of the autonomous system depends on the para- 
meter p 

T = To + a, To=blp (W 

where a is a function of p that vanishes when 

of periodicity of the derivative i(t) one can 
a(Ao + p, p). Substituting this function into 
iclty of x(t), we obtain the equation for the 
fundamental awl itudes A,, 

p = 0. From the condition 
find the function a = 
the condition for period- 
determination of the 

Ml = Cl (To) = - $ i’ f (20, &, 0) sin pt df = 0 

0 

(1.7) 

and also the equation that determines p as an implicit function of IJ 

(f.8) 

Hereby it is assumed that Cl(Te) does not vanish identically. The 
values of the quantities M,, for n = 2, 3, 4. are given* in the work [ll. 

In the case of multiple roots of the equation (1.7). the function 

ptl.0. and hence also the periodic 
the form of series in integral as 
meter ~1. We have 

In [ll there is considered the construction of the periodic solutions 

for a number of cases of double and triple roots of the equation (1.7). 
Hereby, the denominator of the fraction in the exponents of p for double 
roots can take on the values k = 1, 2, while for triple roots the 

values of k are 1. 2. and 3. 

solutions x(t), will be expressed in 
sell as fractional powers of the para- 

(k = 1, 2, 3, . . .) (W 

2. Let us consider the stability of the periodic solutions of the 
equation (1.1) for double and triple roots of the equation of fundamental 

l In [d, the term - k4AON,‘/8 is omitted in the formula for M,. 
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amplitudes. The variational equation for the system (1.1) is 

(2.V 

where x(t) is some periodic solution of the equation (1.1). 

The equation (2.1) is an equation with periodic coefficients. This 

equation has two particular solutions yl( t) and yg( t) which form a 

fundamental system [21 of solutions 

&JJ (0 
Yl (t) = -a&&y , Yl (0) = 1, ill (0) = 0 

Ye (0 = ; (t), YB (0) = 0, ?;e (0) = j;: (0) 
(2.2) 

The characteristic equation for the variational equation has the 

form 

Pa - 2Ap+B=O (2.3) 

where 

iz (T) 1 
2A = Yl m + 7 

YS (0) ’ 
B=- 

Yz (0) 
[Yl m is VI - YS m il ml (2.4) 

Since the particular solution yg(t) of the variational equation is 

periodic, one of the roots of the characteristic equation (2.3) is 

p2 = 1. Hence 

p,=2A-l=B 

Note. In the investigation of the stability of the periodic solutions 

of non-autonomous systems, the sign of the quantity 2A - B - 1 plays an 

important role 121. For autonomous systems this quantity is zero. 

If we substitute for the quantity 2A its expression from (2.4) and 

(2.2)) we obtain 

p1 = ax cr) 1 a_4o (2.5) 

According to the theorem of Andronov and Vitt, the periodic solutions 

of an autonomous system with one degree of .freedom will be stable if 

Pl < 1 (2.6) 

As was mentioned above, for double and triple roots of the equation 

(1.7) the periodic solutions of the system (1.1) can be represented by 

series in powers of p, p l/2 and ~1~‘~. Let us compute the expansion 

&(T)/aA,, as power series in pl/’ and ~1’~. The expansion in while 

powers of p can be obtained as a particular case from the expansion in 
l/2 CI * 
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We shall make use of the notation of the work cl], and write 

p (Al)= LaxAn f an-1 M, n-1 

n 
n! aAon 

1+-- 
(n - I)! a,40+-i 

Ai +.. . + Mll_tl 

Q,(AI)=~~AP+~~A~“-‘+...+P”+~ 
1 1 

(2.7) 

After laborious derivations we obtain the expansion in l~‘/~. 

a$A,,,+$As,,+ . . .)P”~+. . . 

The omitted terms in the coefficients of the expansion (2.8) Contain 

as factors A,,,, and in the last coefficient A,,, and A3,2. 

Realizing that the expansion &(T)/aA, as a series in ~1~‘~ is of 
interest only when there are triple roots (and roots of higher multi- 
plicity) of the equation (1.7), we set 

We obtain 

!$ + . . .)ps+ (+$A,,,‘+. . .)pva+ . . . + 

c+ . ..) p’*h+($Ar+$+ . . .)p’+ 

(2.9) 

The omitted terms contain as factors A,,3 with fractional indices 

which were already included in the preceding coefficients. 

10 what follows we shall assume that the parameter ~1 is so small that 

the signs of the sums of the series appearing in the right-hand parts of 
the formulas (2.8) and (2.9) after the number one. are determined by the 
first noovanishing term. 

All the cases considered in the article tl] are listed in the table. 
which shows for each case the form of the series (1.9). the coefficients 
with which these series start, and the corresponding conditions of sta- 

bility. Therein the case 1 corresponds to simple rOOt8, the case 2 to 
double roots, and the case 3 to triple roots of the equation of 
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fundamental amplitudes (1.7). The various branches of the function P(H) 
are denoted by p(I), p(*) and p(3). 

We note that in the case of double roots, the equation (1.8), with 
M2 = 0, can be transformed with the aid of the substitution p = (Al +y)v 

into the equation 

(2.10) 

Hereby the coefficient Al is determined by means of a quadratic equa- 
tion P,(A,) = 0. 

Analogously, in case of triple roots, the equation (1.8) can be 
transformed. when M2 = 0, aM2/aAo = 0, and M, = 0, by the same substitu- 
tion into 

(2.11) 

The coefficient AI is determined in this case by means of a cubic 
equation P,(A,) = 0. 

3. Let us first consider the characteristic cases when the equation 
(1.7) has double roots. Now the first coefficients of the expansion of 
the quantity p are determined from quadratic equations. Therefore there 
may exist either two solutions with real coefficients or none. 

Let us take the 

AI/Z is determined 

If the roots of this equation are real then they can differ only in 

case 2. 1, when M2 # 0. In this case the coefficient 
from the quadratic binomial equation [II 

-!_?!?A,,~+ Ma=0 
2 L9Aoa * 

sign. The condition of stability takes the form 

A,,j% / MO= < 0 

If MS = 0, then A,,, = 0, and the coefficient A1 is determined from 
the quadratic equation P2(A1) = 0. As explained in the article [ll, a 
solution in the form of a series in p l/2 is obtained only in the case 
when this equation has multiple roots Al(l) = A,(‘). Then the coeffi- 
cient A3,* will be determined from a quadratic binomial equation which 
is similar to the equation for A,,,. The condition for stability in 
this case will be A3,* a2Cl/aAo2 < 0. For the various branches of the 
function p(v) we have the expansions 

3(l) = AI(~ + A.,t$‘z + A&‘$* + . . ., PC’) = Alp - .4,,* paA + A8f2) i” + . . . (3.1) 
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TABLE 

various 
ceses 

i 

2. 1 

2. 2. a) 

C) 

etc. 

3.1 

3.2 

3.3 

3.4 

3 .5. a) 

etc. 

3 . 6. a) 

cl 
etc. 

Coefficients of 

I 1 

Coefficients of 

_ the equation (1.8) 
k 

the equation (1.9) 

M2#0 AI#O 

M2fO 

M2=0, $#O 

ps + 0 

Pfj = 0, 
aQt 
aA +’ 

a% 
-&g =O, Qs#O 

M2fO 

ap3 
-=o, 
8-h 

p4 # 0 

P4 =o, 

aQ3 -- 
aA -0°, 94 # 0 

aw3 ~- 
c?A,2 - 0, p, += 0 

dP4 

pP=o, an,+0 

- 

2 

1 

2 

1 

2 

- 

3 

2 

1 

3 

1 

2 

I 

2 

3 

2 

1 

3 

Au2 # 0 

A,,1 = 0, Al(') # Alt2) 

Al(‘) = A1t2), AJ,* # 0 

Al(‘) = A*@), A,(‘) # Azt2) 

A*,* = 0, Az(‘) = A2@) 

A,,2 # 0 

Alla # 0 

An,, # 0 

A 0, ‘It = Al#O 

At,,, = 0, ‘47, =f= 0 

Al - various 

AI, A,(1) = A,@) 
? = 0, 

A’:* # 0 

A,(‘) = .4,(2), A?(‘) # /@) 

A,. 7 0, A.,(‘) -_ ,.p 
* 

A,;, i 0 

A,(‘) -_ A,(?) = A1f3) 

A,;, f 0 

/p z .4y = A,(3) 
AJI‘ # 0 

A,,tx = 0, 112 # 0 

A,,, = 0, /I,;, # 0 

- 

I 
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Analogously, if As,2 = 0. then the expansion in terms of pli2 will 

exist only under the condition that A2(l) = A2(2’ and so on We note that 

if any one coefficient with a fractional index A,.,,2 # 0, then all 

successive coefficients are determined from linear equations. 

Thus, if the equation (1.7) has a double root the solution is repre- 

sented by a series in powers of u ‘I2 if the first unequal coefficients 

A n,2 have fractional indices. Hereby the condition of stability will 

have the form 

.4 n,zazG i a-40= < 0 

where A,,,2 is the first non-zero coefficient 

Since 

(3.2) 

with a fractional index. 

one of the solutions is stable, while the other one is unstable. 

Now we consider the case 2. 2. a) when M2 = 0 and hence, A1,2 = 0, 

while the quadratic equation P,(A,) = 0 has simple real roots. In this 

case the condition for stability is the inequality aP2/aA1 < 0. If, 

however, the roots of the equation P,(A,) = 0 happen to be multiple 

ones, and if A3,2 = 0. while the roots of the quadratic equation 

Q2(A2) = 0 are simple, then the condition for stability will be 

aQ2/aA2 < 0. Hereby, 

p(i) = A$ + /I&~ + . . . ) p(2) = Alp + A2y2 + . . . (3.3) 

The subsequent coefficients An will be determined from linear equa- 

tions. 

Thus, if in case of double roots of the equation (1.7). the first 

distinct coefficients A,,,2 appear with integer powers of u. then the 

periodic solutions will be represented by series with integral powers 

of P. and the condition of stability will have the form 

awz! a-4, < 0 (3.4) 

where g2(As) = 0 is the first one of the quadratic equations for A 

(n = 1, 2. . ..). which has multiple roots. Hereby one of the solut;ons 
will be stable while the other one will be unstable. 

Next we consider the characteristic cases when the equation (1.7) 

has a triple root. 
powers of ~1~~~. 

Suppose that p can be expanded into a series in 

An example of this case is 3. 1, when M2 y 0. The coeffi- 
cient A,,, is determined by the binomial cubic equation [ll 
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‘%,,,,a + Me = 0 
6 aA$ 

Such equations have one real root and two imaginary roots. Hence, 
only one of the branches of P(u) will be real. If Mp = 0, then A 
and for the determination of AZ,3 

l/3 = 0, 
we shall have an analogous binomial 

cubic equation P3(Alj = 0. The expansion of p in powers of pii3 can 
exist only when all roots of this equation are equal, i.e. when 
~P,/~A,* = 0. The equation for the next following coefficient A,,, 
will also be a binomial cubic equation. If A,,, = A,,, = 0, then for 

the existence of an expansion in powers of ~11’~ it is necessary that 
the cubic equation Q4(A2) = 0 have all roots equal, and so on. 

Thus, for the existence of a solution in the form of a power series 

in ul’j it is necessary that the first coefficients A,,,3, which are not 
equal to each other, have a fractional index. The condition of stability 
in this case will be 

8CJaAos<0 (3.5) 

Let us now consider the case in which two branches of the function 
P(p) are represented by series in u l/2 while one branch is given in 

integral powers of ~1. As an example we’may take the case 3. 2. when 

M, = 0, and a2/aAo f 0. For the determination of A,,* we have the equa- 
tion 

This equation determines two equal roots and one zero root. There 

will exist either three real branches of the function P(u) or one branch. 
The condition will be 

for the first two branches. 

This condition reduces to (3.5) if on.e takes into account the equa- 

tion for the coefficient A,,,. 

For the branch with A,,, = 0, we have a different condition of sta- 

bil its 

aMpI aAo<o (3.6) 

From the condition that A,,* be real it follows that the quantities 
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which stand on the left-hand sides of the inequalities (3.5) and (3.6) 

have different signs. The branch of the function P{u), with AlI2 = 0, 
which is representable by a series in integral Powers of I.& will lie be- 
tween the other two branches. An analogous example is the case 3. 6. b). 
where 

One can show that in this case the conditions of stability reduce to 
the inequal it ies 

aP4laAI < 0 (3.7) 

whereby the quantities on the left-hand sides of these inequalities have 
opposite signs. The first inequality applies to the branches of the 
function P(v) which are representable as series in powers of u I/2 , while 

the second inequality is for the branch which can be represented as a 
series in integral powers of u, This branch is located between the other 
two branches 

In these and in similar cases, the solutions in the form of series 
in u I” will be simult~eousl~ stable or unstable, while the solutions 

in the form of series in integral powers of v will have opposite natures 
in regard to stability. 

An example, which is analogous to those considered above in the 
analysis of expansions in powers of p Ii2 for double roots of the equa- 
tion (1.7). is the case 3. 5. a), Here the condition of stability, for 
the branches representable in series of powers of l.~“*. are 

(3.9) 

The second case 3. 5. b) is of the same nature. 

Finally, there can occur cases in which all three branches of the 
function p(u) are represented by series with integral powers of M. Such 
an example is given by the case 3. 4, in which M2 = aMg/aAe = A!3 = 0, 
while the cubic equation P,(A,) = 0 has three simple real roots, The 
condition of stability will be 

ah I a-4 < 0 (3.-B?) 

The stability and instability of the branches will, obviously, 
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alternate. 

A second example is the subcase of the case 3. 5. b). Here one of 

the roots of the equation P,(A,) = 0 is a double root, but P, = 0 and 

the equation Q3(A,) = 0 have simple roots. In this case 

p(1) = ‘4pp + A*(l)p" + . . . 

$2) = A,'l'p + App + . . . (3.11) 

p(S) = A& + A*@)$ + . . . 

and to the condition of stability (3.10) for the third branch one must 

add the condition of stability for the two other branches 

aQslaAs < 0 (3.12) 

We note that all equations, by means of which the first unequal co- 

efficients A,, are determined, are nonlinear, while all succeeding euqa- 

tions are linear. 
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